Investigating the Role of Emissive Layer Architecture on the Exciton Recombination Zone in Organic Light-Emitting Devices
Autor: | Russell J. Holmes, Nicholas C. Erickson |
---|---|
Rok vydání: | 2013 |
Předmět: |
Materials science
Condensed Matter::Other business.industry Exciton Optical field Condensed Matter::Mesoscopic Systems and Quantum Hall Effect Condensed Matter Physics Electronic Optical and Magnetic Materials Biomaterials Organic semiconductor Condensed Matter::Materials Science Electrochemistry OLED Optoelectronics Charge carrier Diffusion (business) business Biexciton Excitation |
Zdroj: | Advanced Functional Materials. 23:5190-5198 |
ISSN: | 1616-301X |
DOI: | 10.1002/adfm.201300101 |
Popis: | An experimental approach to determine the spatial extent and location of the exciton recombination zone in an organic light-emitting device (OLED) is demonstrated. This technique is applicable to a wide variety of OLED structures and is used to examine OLEDs which have a double- (D-EML), mixed- (M-EML), or graded-emissive layer (G-EML) architecture. The location of exciton recombination in an OLED is an important design parameter, as the local optical field sensed by the exciton greatly determines the efficiency and angular distribution of far-field light extraction. The spatial extent of exciton recombination is an important parameter that can strongly impact exciton quenching and OLED efficiency, particularly under high excitation. A direct measurement of the exciton density profile is achieved through the inclusion of a thin, exciton sensitizing strip in the OLED emissive layer which locally quenches guest excitons and whose position in the emissive layer can be translated across the device to probe exciton formation. In the case of the G-EML device architecture, an electronic model is developed to predict the location and extent of the exciton density profile by considering the drift, diffusion, and recombination of charge carriers within the device. |
Databáze: | OpenAIRE |
Externí odkaz: |