Bäcklund transformation classification, integrability and exact solutions to the generalized Burgers’–KdV equation
Autor: | Xi-Qiang Liu, Zenggui Wang, Hanze Liu, Xiangpeng Xin |
---|---|
Rok vydání: | 2017 |
Předmět: |
Numerical Analysis
Applied Mathematics Direct method Mathematical analysis 01 natural sciences Nonlinear system Nonlinear Sciences::Exactly Solvable and Integrable Systems Exact solutions in general relativity Transformation (function) Homogeneous Modeling and Simulation 0103 physical sciences Polynomial form 010306 general physics Nonlinear evolution Korteweg–de Vries equation 010301 acoustics Mathematics |
Zdroj: | Communications in Nonlinear Science and Numerical Simulation. 44:11-18 |
ISSN: | 1007-5704 |
DOI: | 10.1016/j.cnsns.2016.07.022 |
Popis: | This paper is concerned with the Backlund transformations (BTs) of the nonlinear evolution equations (NLEEs). Based on the homogeneous balance principle (HBP), the existence of the BT of the generalized Burgers’–KdV (B–KdV) equation is classified, then the BTs of the nonlinear equations are given. In general, the method can be used to construct BTs of the nonlinear evolution equations in polynomial form. Furthermore, the integrability and exact explicit solutions to the nonlinear equations are investigated. |
Databáze: | OpenAIRE |
Externí odkaz: |