Continuing Results for Effervescent Aerosol Salt Water Spray Nozzles Intended for Marine Cloud Brightening

Autor: Robert Ormond, Jack Foster, Lee Galbrath, Gary Cooper, Sudhanshu Jain, Armand P. Neukermans
Rok vydání: 2020
Předmět:
Zdroj: International Journal of Geosciences. 11:563-589
ISSN: 2156-8367
2156-8359
DOI: 10.4236/ijg.2020.119030
Popis: Marine Cloud Brightening (MCB) by effervescent spray atomization of mixed sea water brine with air is a candidate for solar radiation management to compensate for global warming. We discovered that the flow from mixing tee nozzle described earlier had occasional unstable slug flow. A new design that adding rotational swirl to the salt brine as it is mixed into the air stabilized the nozzle flow and no longer showed slug flow in spray pictures. Flow equations were developed for the relatively low speed of sound of a choked flow mixed brine and air nozzle. Experimental mixed flow measurements with 300b pressure and a 200 μm diameter nozzle and calculations using perfect gas, and isotropic processes equations compared well with the chocked flow equations. Analysis in EXCEL of particle sizers measurements from both a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS) showed production of many nanometer sized particles estimated as usable for MCB. A small number of micron sized particles were also always present but with about 90% of the sprayed mass. This is a first report with good data over the complete size range. The micron sized particles measured were similar to the measurements of earlier reports which reported no nanometer sized particles. We hypothesize that many nano-particles are always produced by liquid-air effervescent sprays, but earlier, were not observed because SMPS instruments were not available. The presence of the large mass percentage of large particles in the spray may cause problems by evaporative cooling preventing the rise of the MCB particles. We suggest future systems design with an impactor filter to remove the large particles. Calculations combining increased brine concentration, lower pressure, and larger nozzle area showed that significant reductions in required power and number of nozzles could be realized. An EXCEL model is developed to calculate flow from experimental analysis equations and compare with mixed choked flow equations. Solving with the model predicted the power required and the number of nozzles required to produce 1015 particles/s. The model showed that increasing brine concentration strongly lowered total power. Lowering pressure decreased power and increased number of nozzles. Increasing nozzle area lowered the number of nozzles. This model predicted that, at 300b pressure and 200μm diameter nozzle as the experiment but using an increased brine concentration of 0.1 instead of 0.032 would require only 115 nozzles instead of 358 and power of 146 kw instead of 493 kw. Combining increased brine concentration, lower pressure, and larger nozzle area, the model predicted that with a 1 mm diameter nozzle at 30b pressure and salt concentration of 0.2, the nozzle count and power required would drop to only 24 nozzles and power of 28 kw. Whether extending the model to these conditions is valid is not known but suggests further development should be investigated. Filtering out and reusing the 90% or greater large particles mass sprayed combined with the lower power advantage of higher brine concentration is suggested for future systems.
Databáze: OpenAIRE