Milnor–Orr Invariants from the Kontsevich Invariant
Autor: | Takefumi Nosaka |
---|---|
Rok vydání: | 2020 |
Předmět: |
Kontsevich invariant
Pure mathematics Reduction (recursion theory) Degree (graph theory) General Mathematics Mathematics::Algebraic Topology Mathematics::Geometric Topology Knot theory Physics::Fluid Dynamics Nilpotent Mathematics::K-Theory and Homology Tree (set theory) Invariant (mathematics) Mathematics |
Zdroj: | Publications of the Research Institute for Mathematical Sciences. 56:173-193 |
ISSN: | 0034-5318 |
DOI: | 10.4171/prims/56-1-7 |
Popis: | As nilpotent studies in knot theory, we focus on invariants of Milnor, Orr, and Kontsevich. We show that the Orr invariant of degree $ k $ is equivalent to the tree reduction of the Kontsevich invariant of degree $< 2k $. Furthermore, we will see a close relation between the Orr invariant and the Milnor invariant, and discuss a method of computing these invariants |
Databáze: | OpenAIRE |
Externí odkaz: |