Popis: |
In multicellular organisms, cells and tissues coordinate biochemical signal propagation across length scales spanning microns to meters. Endowing synthetic materials with similar capacities for coordinated signal propagation could allow these systems to adaptively regulate themselves across space and over time. Here we combine ideas from cell signaling and electronic circuitry to design a biochemical waveguide that transmits information in the form of a concentration of a DNA species on a directed path. The waveguide can be seamlessly integrated into a soft material because there is virtually no difference between the chemical or physical properties of the waveguide and the material it is embedded within. We propose the design of DNA strand displacement reactions to construct the system and, using reaction-diffusion models, identify kinetic and diffusive parameters that enable super-diffusive transport of DNA species via autocatalysis. Finally, to support experimental waveguide implementation, we show how a sink reaction could mitigate the spurious amplification of an autocatalyst within the waveguide, allowing for controlled waveguide triggering. Chemical waveguides could facilitate the design of synthetic biomaterials with distributed sensing machinery integrated throughout their structure and enable coordinated self-regulating programs triggered by changing environmental conditions. |