Approximate double-periodic solutions in (1+1)-dimensionalϗ 4-theory
Autor: | S. Yu. Vernov, O.A. Khrustalev |
---|---|
Rok vydání: | 1998 |
Předmět: | |
Zdroj: | Theoretical and Mathematical Physics. 116:881-889 |
ISSN: | 1573-9333 0040-5779 |
DOI: | 10.1007/bf02557130 |
Popis: | Double-periodic solutions of the Euler-Lagrange equation for the (1+1)-dimensional scalarϗ4-theory are considered. The nonlinear term is assumed to be small, and the Poincare method is used to seek asymptotic solutions in the standing-wave form. The principal resonance problem, which arises for zero mass, is resolved if the leading-order term is taken in the form of a Jacobi elliptic function. |
Databáze: | OpenAIRE |
Externí odkaz: |