Approximate double-periodic solutions in (1+1)-dimensionalϗ 4-theory

Autor: S. Yu. Vernov, O.A. Khrustalev
Rok vydání: 1998
Předmět:
Zdroj: Theoretical and Mathematical Physics. 116:881-889
ISSN: 1573-9333
0040-5779
DOI: 10.1007/bf02557130
Popis: Double-periodic solutions of the Euler-Lagrange equation for the (1+1)-dimensional scalarϗ4-theory are considered. The nonlinear term is assumed to be small, and the Poincare method is used to seek asymptotic solutions in the standing-wave form. The principal resonance problem, which arises for zero mass, is resolved if the leading-order term is taken in the form of a Jacobi elliptic function.
Databáze: OpenAIRE