Efficient Removal of [UO2]2+, Cs+, and Sr2+ Ions by Radiation-Resistant Gallium Thioantimonates
Autor: | Xing Hui Qi, Wei An Li, Xiao-Ying Huang, Yu Jie Gao, Mei-Ling Feng, Debajit Sarma, Mercouri G. Kanatzidis |
---|---|
Rok vydání: | 2018 |
Předmět: |
chemistry.chemical_classification
Aqueous solution Sulfide Ion exchange Inorganic chemistry chemistry.chemical_element 02 engineering and technology General Chemistry Uranium 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences Biochemistry Catalysis 0104 chemical sciences Ion Partition coefficient Colloid and Surface Chemistry Adsorption chemistry Gallium 0210 nano-technology |
Zdroj: | Journal of the American Chemical Society. 140:11133-11140 |
ISSN: | 1520-5126 0002-7863 |
DOI: | 10.1021/jacs.8b07457 |
Popis: | Unconventional ion exchangers can achieve efficient removal of [UO2]2+, Cs+, and Sr2+ ions from complex aqueous solutions and are of great interest for environmental remediation. We report two new gallium thioantimonates, [Me2NH2]2[Ga2Sb2S7]·H2O (FJSM-GAS-1) and [Et2NH2]2[Ga2Sb2S7]·H2O (FJSM-GAS-2), which present excellent ion exchange properties for [UO2]2+, Cs+, and Sr2+ ions. They exhibit high ion exchange capacities for [UO2]2+, Cs+, and Sr2+ ions ( qmU = 196 mg/g, qmCs = 164 mg/g, and qmSr = 80 mg/g for FJSM-GAS-1, qmU = 144 mg/g for FJSM-GAS-2) and short equilibrium times for [UO2]2+ ion exchange (5 min for FJSM-GAS-1 and 15 min for FJSM-GAS-2, respectively). Both compounds display active ion exchange with [UO2]2+ in the pH range of 2.9-10.5. Moreover, the sulfide compounds could maintain high distribution coefficients KdU even in the presence of excess Na+, Ca2+, and HCO3-. The distribution coefficient KdU of 6.06 × 106 mL/g exhibited by FJSM-GAS-1 is the highest among the reported U adsorbents. The [UO2]2+-laden products can be recycled by conveniently eluting the uranium with a low-cost method. These advantages combined with facile synthesis, as well as β and γ radiation resistance, make FJSM-GAS-1 and FJSM-GAS-2 promising for selective separations in nuclear waste remediation. |
Databáze: | OpenAIRE |
Externí odkaz: |