Littlewood–Paley–Rubio de Francia inequality for the Walsh system
Autor: | Nikolay N. Osipov |
---|---|
Rok vydání: | 2017 |
Předmět: |
Mathematics::Functional Analysis
Algebra and Number Theory Inequality Applied Mathematics media_common.quotation_subject 010102 general mathematics Mathematics::Classical Analysis and ODEs 01 natural sciences 010305 fluids & plasmas Combinatorics Littlewood paley Walsh function 0103 physical sciences 0101 mathematics Analysis Mathematics media_common |
Zdroj: | St. Petersburg Mathematical Journal. 28:719-726 |
ISSN: | 1547-7371 1061-0022 |
DOI: | 10.1090/spmj/1469 |
Popis: | Rubio de Francia proved the one-sided Littlewood--Paley inequality for arbitrary intervals in $L^p$, $2 \le p < \infty$. In this article, such an inequality is proved for the Walsh system. |
Databáze: | OpenAIRE |
Externí odkaz: |