Anwendungssteuerung mittels Fußgesten

Autor: Stark, Gerhard
Jazyk: němčina
Rok vydání: 2021
Předmět:
DOI: 10.25924/opus-3905
Popis: Heutzutage gewinnen visuelle und akustische Eingabemethoden für die Interaktion mit Anwendungen oder Komponenten zunehmend an Bedeutung und sollen die klassische Maus oder Tastatur gegebenenfalls ersetzen. Abgesehen von der Sprachsteuerung benötigen jedoch auch die neuen Methoden für das Absetzen eines Befehls größtenteils die Hände. Es bleibt jedoch die Frage bestehen was passiert, wenn keine freie Hand zur Verfügung steht und ein Sprachbefehl aufgrund des Lärmpegels nicht erkannt wird. Diese Arbeit beschreibt das Konzept einer alternativen Anwendungssteuerung mit Fußgesten und verwendet dafür die Einlegesohlen ‚stapp one‘, die mit Druck- und Beschleunigungssensoren ausgestattet sind. Aufgrund der Durchführung einer Umfrage mit Mehrheitsvotum lassen sich verschiedene Fußgesten für entsprechende Aktionen der gesteuerten Komponenten definieren. Diese wirken auf die Anwender und Anwenderinnen intuitiv und weisen folglich eine hohe Akzeptanz bei der Benutzung auf. Mit einer Verbindungskombination aus Bluetooth und ‚User-Datagram-Protocol‘ (UDP) werden die Sensordaten von der Sohle, über ein Smartphone, zu einem Computer weitergeleitet, um eine Gestenerkennung mit Machine-Learning umzusetzen. Über ein Datenfluss-System werden die empfangenen Werte der Sensoren aufbereitet und eine Feature-Extraktion durchgeführt, sodass diese für eine Klassifizierung von Fußgesten dienen. Basierend auf ‚Deeplearning4j‘ wird ein Algorithmus mit ‚Long Short-Term Memory‘ implementiert und zusammen mit dem Datenfluss-System als ‚Java‘-Bibliothek zur Verfügung gestellt. Zusätzlich werden Datensätze von Fußgesten einer Person erstellt und zum Training sowie zur Evaluierung der Gestenerkennung verwendet. In einer letzten Umfrage wird die implementierte Bibliothek in zwei Applikationen integriert. Zudem wird die Funktion des definierten ‚Gesten-Aktionen-Mapping‘ in drei Anwendungsszenarien analysiert. Die Forschungsergebnisse zeigen eine zuverlässige Klassifizierung der Fußgesten mit einer Genauigkeit von 82 %, wobei unter realen Bedingungen auch Werte zwischen 85 % und 100 % erreicht werden.
Databáze: OpenAIRE