Collaborative Robot Risk of Passage Among Dynamic Obstacles

Autor: Jared T. Flowers, Gloria J. Wiens
Rok vydání: 2021
Předmět:
Zdroj: Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability.
Popis: Industry 4.0 projects ubiquitous collaborative robots in smart factories of the future, particularly in assembly and material handling. To ensure efficient and safe human-robot collaborative interactions, this paper presents a novel algorithm for estimating Risk of Passage (ROP) a robot incurs by passing between dynamic obstacles (humans, moving equipment, etc.). This paper posits that robot trajectory durations will be shorter and safer if the robot can react proactively to predicted collision between a robot and human worker before it occurs, compared to reacting when it is imminent. I.e., if the risk that obstacles may prohibit robot passage at a future time in the robot’s trajectory is greater than a user defined risk limit, then an Obstacle Pair Volume (OPV), encompassing the obstacles at that time, is added to the planning scene. Results found from simulation show that an ROP algorithm can be trained in ∼120 workcell cycles. Further, it is demonstrated that when a trained ROP algorithm introduces an OPV, trajectory durations are shorter compared to those avoiding obstacles without the introduction of an OPV. The use of ROP estimation with addition of OPV allows workcells to operate proactively smoother with shorter cycle times in the presence of unforeseen obstacles.
Databáze: OpenAIRE