Exact solution to Lippmann-Schwinger equation for a circular billiard
Autor: | Alan C. Maioli, Alexandre G. M. Schmidt |
---|---|
Rok vydání: | 2018 |
Předmět: |
Physics
Operator (physics) Statistical and Nonlinear Physics Eigenfunction 01 natural sciences 010305 fluids & plasmas Lippmann–Schwinger equation symbols.namesake Exact solutions in general relativity 0103 physical sciences symbols Physics::Atomic Physics Dynamical billiards 010306 general physics Wave function Mathematical Physics Bessel function Eigenvalues and eigenvectors Mathematical physics |
Zdroj: | Journal of Mathematical Physics. 59:122102 |
ISSN: | 1089-7658 0022-2488 |
DOI: | 10.1063/1.5056259 |
Popis: | We present an exact solution to the Lippmann-Schwinger equation for a two-dimensional circular billiard. After diagonalizing an integral operator whose kernel is a zeroth order Hankel function of first kind, we use its eigenfunctions and eigenvalues to obtain in a straightforward way the exact wavefunctions of the referred Lippmann-Schwinger equation. |
Databáze: | OpenAIRE |
Externí odkaz: |