Exact solution to Lippmann-Schwinger equation for a circular billiard

Autor: Alan C. Maioli, Alexandre G. M. Schmidt
Rok vydání: 2018
Předmět:
Zdroj: Journal of Mathematical Physics. 59:122102
ISSN: 1089-7658
0022-2488
DOI: 10.1063/1.5056259
Popis: We present an exact solution to the Lippmann-Schwinger equation for a two-dimensional circular billiard. After diagonalizing an integral operator whose kernel is a zeroth order Hankel function of first kind, we use its eigenfunctions and eigenvalues to obtain in a straightforward way the exact wavefunctions of the referred Lippmann-Schwinger equation.
Databáze: OpenAIRE