Preparation and Characterization of Fe3O4@MTX Magnetic Nanoparticles for Thermochemotherapy of Primary Central Nervous System Lymphoma in vitro and in vivo

Autor: Yan Zhang, Tian Xue, Zhong Yuejiao, Yao Jingqing, Qianling Lu, Tingting Bai, Li Yuntao, Zhirui Guo, Dai Xinyu
Rok vydání: 2019
Předmět:
Zdroj: International Journal of Nanomedicine. 14:9647-9663
ISSN: 1178-2013
Popis: Background Primary central nervous system lymphomas (PCNSL) are extranodal malignant non-Hodgkin lymphomas (NHL) that arise exclusively in central nervous system (CNS). Diffuse large B-cell lymphoma (DLBCL) is the most common histological subtype. Purpose To evaluate whether nano drug-loading system-mediated magnetic-targeted thermochemotherapy could produce a better therapeutic effect than single chemotherapy while reducing the use of chemotherapeutic drugs. Methods Six groups (control, Fe3O4, MTX, Fe3O4@MTX, Fe3O4 with hyperthermia and Fe3O4@MTX with hyperthermia) were set. Tumor cell apoptosis in each treatment group was detected by flow cytometry. Apoptosis-related gene expressions Caspase-3, Bax and Bcl-2 were detected by qPCR and Western blot; intracranial tumor model of PCNSL was established by intracranial injection of OCI-LY18 tumor cells into BALB/c-Nude mice. Magnetic resonance imaging (MRI) was used to monitor tumor progression and HE tumor cells were significantly reduced in thermochemotherapy group. Expression of apoptosis-related gene Caspase-3 and Bax were significantly upregulated in tumor tissues, while expression of Bcl-2 gene was significantly downregulated. Conclusion These results demonstrated in vivo and in vitro that the combined thermochemotherapy of Fe3O4@MTX MNPs was superior to the single MTX chemotherapy with less dosage, which may promote apoptosis of DLBCL cells through the mitochondrial apoptotic pathway and provided a new way for the treatment of PCNSL.
Databáze: OpenAIRE