Domination and total domination in complementary prisms
Autor: | Michael A. Henning, Teresa W. Haynes, Lucas C. van der Merwe |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Zdroj: | Journal of Combinatorial Optimization. 18:23-37 |
ISSN: | 1573-2886 1382-6905 |
DOI: | 10.1007/s10878-007-9135-8 |
Popis: | Let G be a graph and ${\overline {G}}$ be the complement of G. The complementary prism $G{\overline {G}}$ of G is the graph formed from the disjoint union of G and ${\overline {G}}$ by adding the edges of a perfect matching between the corresponding vertices of G and ${\overline {G}}$ . For example, if G is a 5-cycle, then $G{\overline {G}}$ is the Petersen graph. In this paper we consider domination and total domination numbers of complementary prisms. For any graph G, $\max\{\gamma(G),\gamma({\overline {G}})\}\le \gamma(G{\overline {G}})$ and $\max\{\gamma_{t}(G),\gamma_{t}({\overline {G}})\}\le \gamma_{t}(G{\overline {G}})$ , where γ(G) and γ t (G) denote the domination and total domination numbers of G, respectively. Among other results, we characterize the graphs G attaining these lower bounds. |
Databáze: | OpenAIRE |
Externí odkaz: |