Popis: |
The outer membrane (OM) of Gram-negative bacteria is a robust protective barrier that excludes major classes of antibiotics. The assembly, integrity and functioning of the OM is dependent on β-barrel outer membrane proteins (OMPs), the insertion of which is catalyzed by BamA, the core component of the β-barrel assembly machine (BAM) complex. Little is known about BamA in the context of its native OM environment. Here, using high-affinity fluorescently-labelled antibodies in combination with diffraction-limited and super-resolution fluorescence microscopy, we uncover the spatial and temporal organization of BamA in live Escherichia coli K-12 cells. BamA is clustered into ~150 nm diameter islands that contain an average of 10-11 BamA molecules, in addition to other OMPs, and are distributed throughout the OM and which migrate to the poles during growth. In stationary phase cells, BamA is largely confined to the poles. Emergence from stationary phase coincides with new BamA-containing islands appearing on the longitudinal axis of cells, suggesting they are not seeded by pre-existing BamAs but initiate spontaneously. Consistent with this interpretation, BamA-catalyzed OMP biogenesis is biased towards non-polar regions. Cells ensure the capacity for OMP biogenesis is uniformly distributed during exponential growth, even if the growth rate changes, by maintaining an invariant density of BamA-containing OMP islands (~9 islands/μm2) that only diminishes as cells enter stationary phase, the latter change governing what OMPs predominate as cells become quiescent. We conclude that OMP distribution in E. coli is driven by the spatiotemporal organisation of BamA which varies with the different phases of growth.SignificanceThe integrity and functioning of the outer membrane (OM) of Gram-negative bacteria depends on the β-barrel assembly machinery (BAM). Although the structure and the mechanism of the complex have been widely explored, little information exists about the organization of the BAM complex and how it dictates protein distribution in the OM. Here, we utilized highly specific monoclonal antibodies to study the spatiotemporal organization of BamA, the key component of this complex. We reveal that BAM organization is dynamic and tightly linked to the cell’s growth phase. We further discover that the rate of BAM facilitated OMP biogenesis is significantly reduced near the poles. In turn, these features govern the biogenesis patterns and the distribution of OMPs on the cell surface. |