Optimizing carbon coating to synthesize phase pure LiVPO4F cathode through a combined sol-gel and PTFE reaction
Autor: | C. Sudarshan, Chandran Sudakar, Y. Lokeswararao |
---|---|
Rok vydání: | 2021 |
Předmět: |
Materials science
Rietveld refinement Carbon Additive chemistry.chemical_element 02 engineering and technology 010402 general chemistry 021001 nanoscience & nanotechnology Condensed Matter Physics 01 natural sciences Cathode 0104 chemical sciences law.invention Chemical engineering chemistry law Reagent Phase (matter) Fluorine General Materials Science Cyclic voltammetry 0210 nano-technology Sol-gel |
Zdroj: | Materials Chemistry and Physics. 263:124362 |
ISSN: | 0254-0584 |
DOI: | 10.1016/j.matchemphys.2021.124362 |
Popis: | Phase pure carbon-coated high voltage cathode material LiVPO4F (LVPF/C) is synthesized by a facile sol-gel method and reacting the precursor powder with PTFE. Secondary phases such as Li3V2(PO4)3, Li9V3(P2O7)3(PO4)2, V2O3 and LiVP2O7 are shown to get mitigated by the addition of lauric acid, which also acts as carbon source. Phase pure LiVPO4F with good conducting properties are produced under the optimum use of oleic acid (OA; 1.31 mg, 0.84 wt. %) and lauric acid (LA; 0.25 mg, 0.16 wt. %) which are used to control particle size and carbon coating reagent, respectively. Polytetrafluoroethylene (PTFE, 35 wt.%) is reacted with the precursor during annealing to control fluorine loss. Rietveld refinement indicates the formation of phase pure LiVPO4F. The optimized cathode, LVPF/C (0.25 g LA), exhibit flat potential during the lithiation and dilithiation process with plateaus ~ 4.21 V and ~4.17 V at 0.1C-rate. Discharge capacities of 96.3 mAh g−1 (44.6 mAh g−1) are obtained at 0.1C(10C)-rate. Diffusion coefficient ~10−15 cm2s−1 is estimated from cyclic voltammetry studies. Carbon additive decreases the internal resistance and enables easy charge transfer resistance through the electrode-electrolyte interface. The cumulative effect of synthesizing phase pure compound, carbon coating, with optimum diffusion coefficient and charge transfer resistance provide the better electrochemical performance of the LVPF/C cathode. |
Databáze: | OpenAIRE |
Externí odkaz: |