The index of small length sequences
Autor: | Uzi Vishne, David J. Grynkiewicz |
---|---|
Rok vydání: | 2020 |
Předmět: |
Index (economics)
Computer Science::Information Retrieval General Mathematics Modulo 010102 general mathematics Astrophysics::Instrumentation and Methods for Astrophysics Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) 0102 computer and information sciences 01 natural sciences Combinatorics TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES 010201 computation theory & mathematics ComputingMethodologies_DOCUMENTANDTEXTPROCESSING Computer Science::General Literature 0101 mathematics ComputingMilieux_MISCELLANEOUS Mathematics Range (computer programming) Integer (computer science) |
Zdroj: | International Journal of Algebra and Computation. 30:977-1014 |
ISSN: | 1793-6500 0218-1967 |
Popis: | Let [Formula: see text] be a fixed integer. Define [Formula: see text] to be the unique integer in the range [Formula: see text] which is congruent to [Formula: see text] modulo [Formula: see text]. Given [Formula: see text], let [Formula: see text] and define [Formula: see text] to be the index of the sequence [Formula: see text]. If [Formula: see text] have [Formula: see text] but [Formula: see text] for all proper, non-empty subsets [Formula: see text], then a still open conjecture asserts that [Formula: see text] provided that [Formula: see text]. We give an alternative proof, that does not rely on computer calculations, verifying this conjecture when [Formula: see text] is a product of two prime powers. |
Databáze: | OpenAIRE |
Externí odkaz: |