A splitting method for nonlinear diffusions with nonlocal, nonpotential drifts

Autor: Guillaume Carlier, Maxime Laborde
Rok vydání: 2017
Předmět:
Zdroj: Nonlinear Analysis: Theory, Methods & Applications. 150:1-18
ISSN: 0362-546X
DOI: 10.1016/j.na.2016.10.026
Popis: We prove an existence result for nonlinear diffusion equations in the presence of a nonlocal density-dependent drift which is not necessarily potential. The proof is constructive and based on the Helmholtz decomposition of the drift and a splitting scheme. The splitting scheme combines transport steps by the divergence-free part of the drift and semi-implicit minimization steps a la Jordan-Kinderlherer Otto to deal with the potential part.
Databáze: OpenAIRE