Nanoparticle Synthesis from Biowaste and Its Potential as an Antimicrobial Agent

Autor: Kangkana Kalita, Athira Pv, N Pradeep, Rishana Saffar, Suba G A Manuel
Rok vydání: 2021
Předmět:
DOI: 10.21203/rs.3.rs-718715/v1
Popis: Biosynthesized nanoparticles are gaining more importance because of their unique biological applications and can be synthesised using biowastes like fruit peels that acts as a better alternative against conventional physical and chemical methods. This work reports an ecofriendly, reliable and cost-effective synthesis of silver and zinc oxide nanoparticles (Ag and ZnO NPs) chemically and biologically using fresh peel extracts of Punica granatum and Musa acuminata. The synthesised nanoparticles were characterized using UV-Visible spectroscopy, X-ray Diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDS). The size of chemically and biosynthesized Ag and ZnO NPs ranged around 12-20 nm and 0.4-24 nm respectively. Both biosynthesized Ag and ZnO NPs were found to be nanospheres whereas chemically synthesised ZnO NPs were nanoflakes and showed maximum absorbance in the range of 250-550nm. Antimicrobial properties of the synthesized nanoparticles were assessed by well diffusion method against Gram negative Escherichia coli and Gram-positive Bacillus subtilis. Biosynthesized Ag NPs were found to be more efficient against E. coli as compared to ZnO NPs wherein biosynthesized M. acuminata Ag NPs exhibiting maximum zone of inhibition (28.4±14.66mm). Similarly, biosynthesized ZnO NPs were more efficient against B. subtilis as compared to biosynthesized Ag NPs wherein biosynthesized P. granatum ZnO NPs exhibiting maximum zone of inhibition (14.08±3.03mm). Hence biosynthesized NPs can be exploited as a potential candidate for antimicrobial agents. Scientific and systematic use of biowaste for NPs synthesis could in turn result in a sustainable solution for waste management.
Databáze: OpenAIRE