Mitochondrial Matrix Protease ClpP Agonists inhibit Cancer Stem Cell Function in Breast Cancer Cells by Disrupting Mitochondrial Homeostasis

Autor: Yoshimi E. Greer, Lidia Hernandez, Emily M. J. Fennell, Donna Voeller, Raj Chari, Sam Gilbert, Binwu Tang, Markus Hafner, Christina M. Annunziata, Edwin Iwanowicz, Lee M. Graves, Stanley Lipkowitz
Rok vydání: 2022
DOI: 10.1101/2022.03.18.484947
Popis: Mitochondria are multifaceted organelles which are important for bioenergetics, biosynthesis and signaling in metazoans. Mitochondrial functions are frequently altered in cancer to promote both the energy and the necessary metabolic intermediates for biosynthesis required for tumor growth. Cancer stem cells (CSCs) contribute to chemotherapy resistance, relapse, and metastasis. Recent studies have shown that while non-stem, bulk cancer cells utilize glycolysis, breast CSCs are more dependent on oxidative phosphorylation (OxPhos) and therefore targeting mitochondria may inhibit CSC function. We previously reported that small molecule ONC201, which is an agonist for the mitochondrial caseinolytic protease (ClpP), induces mitochondrial dysfunction in breast cancer cells. In this study, we report that ClpP agonists inhibit breast cancer CSC functionin vitroandin vivo. Mechanistically, we found that OxPhos inhibition downregulates multiple pathways required for CSC function, such as the mevalonate pathway, YAP, Myc, and the HIF pathway. ClpP agonists showed significantly greater inhibitory effect on CSC functions compared with other mitochondria-targeting drugs. Further studies showed that ClpP agonists deplete NAD(P)+ and NAD(P)H and induce redox imbalance, and dysregulate one-carbon metabolism and proline biosynthesis. Downregulation of these pathways by ClpP agonists further contribute to the inhibition of CSC function. In conclusion, ClpP agonists inhibit breast CSC functions by disrupting mitochondrial homeostasis in breast cancer cells and inhibiting multiple pathways critical to CSC function.
Databáze: OpenAIRE