Edge‐coloring linear hypergraphs with medium‐sized edges

Autor: David G. Harris, Vance Faber
Rok vydání: 2019
Předmět:
Zdroj: Random Structures & Algorithms. 55:153-159
ISSN: 1098-2418
1042-9832
DOI: 10.1002/rsa.20843
Popis: Motivated by the Erd\H{o}s-Faber-Lov\'{a}sz (EFL) conjecture for hypergraphs, we consider the list edge coloring of linear hypergraphs. We show that if the hyper-edge sizes are bounded between $i$ and $C_{i,\epsilon} \sqrt{n}$ inclusive, then there is a list edge coloring using $(1 + \epsilon) \frac{n}{i - 1}$ colors. The dependence on $n$ in the upper bound is optimal (up to the value of $C_{i,\epsilon}$).
Databáze: OpenAIRE