Phosphate sorption by synthetic amorphous aluminium hydroxides: a 27Al and 31P solid-state MAS NMR spectroscopy study
Autor: | Karel Vlassak, Pierre Grobet, Roel Merckx, R Lookman |
---|---|
Rok vydání: | 1994 |
Předmět: | |
Zdroj: | European Journal of Soil Science. 45:37-44 |
ISSN: | 1365-2389 1351-0754 |
DOI: | 10.1111/j.1365-2389.1994.tb00484.x |
Popis: | Summary The sorption of phosphate on amorphous aluminium hydroxides was investigated using 27Al and 71P solid-state magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, following the effect of different exposures to soluble phosphate. The spectra obtained were compared with the spectrum of amorphous aluminium phosphate. Aluminium in the unreacted hydroxide had a 100% octahedral co-ordination. When dried at 200°C and exposed to soluble phosphate, very little (maximum 0.1%) amorphous aluminium hydroxide transformed to a tetrahedral co-ordination (A1 bound by oxygen bridges to four P atoms), even after 120d. The tetrahedral co-ordination exists in aluminium phosphate gel, although most of its A1 atoms exhibit an octahedral co-ordination. For the aluminium hydroxide dried at 200°C, no formation of aluminium phosphate in which aluminium is in octahedral co-ordination could be detected, not even when the aluminium hydroxide was exposed to a phosphate solution for 120 d. We concluded that the formation of aluminium phosphate is restricted to the surface of the hydroxide. Most of the phosphate which is bound to the aluminium oxide however may not have formed a ‘bulk solid’ aluminium phosphate, but is adsorbed on the internal and external surface of the oxide. The same amorphous aluminium hydroxide, dried at 70°C instead of 200°C, is converted much more rapidly to aluminium phosphate when exposed to soluble phosphate. We propose a P-induced weathering mechanism to describe P sorption on amorphous aluminium hydroxides at high P concentrations. In addition to NMR, phosphate adsorption experiments conducted on aluminium hydroxides dried at different temperatures produced evidence that the porosity of the aluminium hydroxide aggregated particles can also be a factor controlling the rate of phosphate uptake from solution, if the aggregate is stable (is not resuspended) in solution. |
Databáze: | OpenAIRE |
Externí odkaz: |