Quadratic Interaction Estimate for Hyperbolic Conservation Laws: an Overview

Autor: Stefano Modena
Rok vydání: 2018
Předmět:
Zdroj: Journal of Mathematical Sciences. 233:905-929
ISSN: 1573-8795
1072-3374
DOI: 10.1007/s10958-018-3972-0
Popis: In a joint work with S. Bianchini [8] (see also [6, 7]), we proved a quadratic interaction estimate for the system of conservation laws $$ \left\{\begin{array}{l}{u}_t+f{(u)}_x=0,\\ {}u\left(t=0\right)={u}_0(x),\end{array}\right. $$ where u : [0, ∞) × ℝ → ℝn, f : ℝn → ℝn is strictly hyperbolic, and Tot.Var.(u0) ≪ 1. For a wavefront solution in which only two wavefronts at a time interact, such an estimate can be written in the form $$ \sum \limits_{t_j\;\mathrm{interaction}\ \mathrm{time}}\frac{\left|\sigma \left({\alpha}_j\right)-\sigma \left({\alpha}_j^{\prime}\right)\right|\left|{\alpha}_j\right|\left|{\alpha}_j^{\prime}\right|}{\left|{\alpha}_j\right|+\left|{\alpha}_j^{\prime}\right|}\le C(f)\mathrm{Tot}.\mathrm{Var}.{\left({u}_0\right)}^2, $$ where αj and $$ {\alpha}_j^{\prime } $$ are the wavefronts interacting at the interaction time tj, σ(·) is the speed, |·| denotes the strength, and C(f) is a constant depending only on f (see [8, Theorem 1.1] or Theorem 3.1 in the present paper for a more general form). The aim of this paper is to provide the reader with a proof for such a quadratic estimate in a simplified setting, in which: • all the main ideas of the construction are presented; • all the technicalities of the proof in the general setting [8] are avoided.
Databáze: OpenAIRE