Portfolio optimization based on GARCH-EVT-Copula forecasting models

Autor: Andreas Stephan, Maziar Sahamkhadam, Ralf Östermark
Rok vydání: 2018
Předmět:
Zdroj: International Journal of Forecasting. 34:497-506
ISSN: 0169-2070
DOI: 10.1016/j.ijforecast.2018.02.004
Popis: This study uses GARCH-EVT-copula and ARMA-GARCH-EVT-copula models to perform out-of-sample forecasts and simulate one-day-ahead returns for ten stock indexes. We construct optimal portfolios based on the global minimum variance (GMV), minimum conditional value-at-risk (Min-CVaR) and certainty equivalence tangency (CET) criteria, and model the dependence structure between stock market returns by employing elliptical (Student- t and Gaussian) and Archimedean (Clayton, Frank and Gumbel) copulas. We analyze the performances of 288 risk modeling portfolio strategies using out-of-sample back-testing. Our main finding is that the CET portfolio, based on ARMA-GARCH-EVT-copula forecasts, outperforms the benchmark portfolio based on historical returns. The regression analyses show that GARCH-EVT forecasting models, which use Gaussian or Student- t copulas, are best at reducing the portfolio risk.
Databáze: OpenAIRE