Robinson–Schensted correspondence for unit interval orders
Autor: | Dongkwan Kim, Pavlo Pylyavskyy |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Selecta Mathematica. 27 |
ISSN: | 1420-9020 1022-1824 |
Popis: | The Stanley–Stembridge conjecture associates a symmetric function to each natural unit interval order $$\mathcal {P}$$ . In this paper, we define relations a la Knuth on the symmetric group for each $$\mathcal {P}$$ and conjecture that the associated $$\mathcal {P}$$ -Knuth equivalence classes are Schur-positive, refining theorems of Gasharov, Brosnan-Chow, Guay-Paquet, and Shareshian-Wachs. The resulting equivalence graphs fit into the framework of D graphs studied by Assaf. Furthermore, we conjecture that the Schur expansion is given by column-readings of $$\mathcal {P}$$ -tableaux that occur in the equivalence class. We prove these conjectures for $$\mathcal {P}$$ avoiding two specific suborders by introducing $$\mathcal {P}$$ -analog of Robinson–Schensted insertion, giving an answer to a long standing question of Chow. |
Databáze: | OpenAIRE |
Externí odkaz: |