A class of binary cyclic codes with optimal parameters
Autor: | Kaiqiang Liu, Qi Wang, Haode Yan |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Cryptography and Communications. 14:663-675 |
ISSN: | 1936-2455 1936-2447 |
DOI: | 10.1007/s12095-021-00548-1 |
Popis: | For positive integers k ≥ 2 and t, let m = 2kt and α be a primitive element of the finite field $\mathbb {F}_{2^{m}}$ . In this paper, we study the parameters of a class of cyclic codes $\mathcal {C}_{(1,v)}$ which has two zeros α and αv with $v=\frac {2^{m}-1}{2^{t}+1}$ . It is shown that $\mathcal {C}_{(1,v)}$ is optimal or almost optimal with respect to the sphere packing bound. Based on some results of Kloosterman sums and Gaussian periods, the weight distribution of the dual code of $\mathcal {C}_{(1,v)}$ is completely determined when t = 5. |
Databáze: | OpenAIRE |
Externí odkaz: |