The Hermite pseudospectral method for the two-dimensional Schrödinger equation with nonseparable potentials
Autor: | H. Alıcı |
---|---|
Rok vydání: | 2015 |
Předmět: |
Hermite polynomials
Mathematical analysis Schrödinger equation Computational Mathematics Range (mathematics) symbols.namesake Computational Theory and Mathematics Modeling and Simulation Chebyshev pseudospectral method symbols Pseudo-spectral method Wave function Eigenvalues and eigenvectors Energy (signal processing) Mathematics |
Zdroj: | Computers & Mathematics with Applications. 69:466-476 |
ISSN: | 0898-1221 |
DOI: | 10.1016/j.camwa.2015.01.002 |
Popis: | Energy eigenvalues and wavefunctions of the two-dimensional time-independent Schrodinger equation on the whole real plane with a wide range of nonseparable potentials are obtained to a high accuracy by using Hermite pseudospectral methods. Comparison with other methods confirms the efficiency of the present method. |
Databáze: | OpenAIRE |
Externí odkaz: |