Novel Clinical mNGS-Based Machine Learning Model for Rapid Antimicrobial Susceptibility Testing of Acinetobacter baumannii
Autor: | Xuejiao Hu, Yunhu Zhao, Peng Han, Suling Liu, Weijiang Liu, Cong Mai, Qianyun Deng, Jing Ren, Jiajie Luo, Fangyuan Chen, Xuefeng Jia, Jing Zhang, Guanhua Rao, Bing Gu |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Journal of Clinical Microbiology. 61 |
ISSN: | 1098-660X 0095-1137 |
DOI: | 10.1128/jcm.01805-22 |
Popis: | Multidrug-resistant (MDR) bacteria are important public health problems. Antibiotic susceptibility testing (AST) currently uses time-consuming culture-based procedures, which cause treatment delays and increased mortality. We developed a machine learning model using Acinetobacter baumannii as an example to explore a fast AST approach using metagenomic next-generation sequencing (mNGS) data. |
Databáze: | OpenAIRE |
Externí odkaz: |