On the non-existence of mad families

Autor: Saharon Shelah, Haim Horowitz
Rok vydání: 2018
Předmět:
Zdroj: Archive for Mathematical Logic. 58:325-338
ISSN: 1432-0665
0933-5846
DOI: 10.1007/s00153-018-0640-5
Popis: We show that the non-existence of mad families is equiconsistent with $$\textit{ZFC}$$ , answering an old question of Mathias. We also consider the above result in the general context of maximal independent sets in Borel graphs, and we construct a Borel graph G such that $$\textit{ZF}+\textit{DC}+$$ “there is no maximal independent set in G” is equiconsistent with $$\textit{ZFC}+$$ “there exists an inaccessible cardinal”.
Databáze: OpenAIRE