Global Hopf bifurcation of a population model with stage structure and strong Allee effect
Autor: | Junjie Wei, Pengmiao Hao, Xuechen Wang |
---|---|
Rok vydání: | 2017 |
Předmět: |
Hopf bifurcation
Bistability Applied Mathematics 010102 general mathematics Ode Structure (category theory) 01 natural sciences Stability (probability) symbols.namesake Population model 0103 physical sciences symbols Discrete Mathematics and Combinatorics Applied mathematics 0101 mathematics 010301 acoustics Analysis Bifurcation Mathematics Allee effect |
Zdroj: | Discrete & Continuous Dynamical Systems - S. 10:973-993 |
ISSN: | 1937-1179 |
DOI: | 10.3934/dcdss.2017051 |
Popis: | This paper is devoted to the study of a single-species population model with stage structure and strong Allee effect. By taking $τ$ as a bifurcation parameter, we study the Hopf bifurcation and global existence of periodic solutions using Wu's theory on global Hopf bifurcation for FDEs and the Bendixson criterion for higher dimensional ODEs proposed by Li and Muldowney. Some numerical simulations are presented to illustrate our analytic results using MATLAB and DDE-BIFTOOL. In addition, interesting phenomenon can be observed such as two kinds of bistability. |
Databáze: | OpenAIRE |
Externí odkaz: |