Density of periodic points for Lattès maps over finite field

Autor: Karina Cho, Trevor Hyde, Bianca Thompson, Chieh-Mi Lu, Zoë Bell, Eric Zhu, Jasmine Camero
Rok vydání: 2022
Předmět:
Zdroj: Journal of Number Theory. 238:951-966
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2021.10.009
Popis: Let L d be the Lattes map associated to the multiplication-by-d endomorphism of an elliptic curve E defined over a finite field F q . We determine the density δ ( L d , q ) of periodic points for L d in P 1 ( F q ) . We show that the periodic point densities δ ( L d , q n ) converge as n → ∞ along certain arithmetic progressions, and compute simple explicit formulas for δ ( L l , q ) when l is a prime and E belongs to a special family of supersingular elliptic curves.
Databáze: OpenAIRE