Autor: |
Karina Cho, Trevor Hyde, Bianca Thompson, Chieh-Mi Lu, Zoë Bell, Eric Zhu, Jasmine Camero |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Journal of Number Theory. 238:951-966 |
ISSN: |
0022-314X |
DOI: |
10.1016/j.jnt.2021.10.009 |
Popis: |
Let L d be the Lattes map associated to the multiplication-by-d endomorphism of an elliptic curve E defined over a finite field F q . We determine the density δ ( L d , q ) of periodic points for L d in P 1 ( F q ) . We show that the periodic point densities δ ( L d , q n ) converge as n → ∞ along certain arithmetic progressions, and compute simple explicit formulas for δ ( L l , q ) when l is a prime and E belongs to a special family of supersingular elliptic curves. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|