A Refinement of the Central Limit Theorem for Random Determinants

Autor: V. L. Girko
Rok vydání: 1998
Předmět:
Zdroj: Theory of Probability & Its Applications. 42:121-129
ISSN: 1095-7219
0040-585X
DOI: 10.1137/s0040585x97975939
Popis: The paper proves the central limit theorem (the logarithmic law) for random determinants under weaker conditions than the author used earlier: if for any n the random elements $\xi_{ij}^{(n)}$, $i,j=1\lz n$, of the matrix $\Xi=(\xi_{ij}/n)$ are independent, $\bE\xi_{ij}^{(n)}=a$, $\var\xi_{ij}^{(n)}=1$, and for some $\dt > 0$ $$ \sup_n\max_{i,j=1\lz n}\bE|\xn|^{4+\dt} < \iy, $$ then $$ %\eqalignno{ \lny\Big\{{\log\det\Xi^2-\log (n-1)!-\log (1+na^2)\over \sqrt{2\log n}} < x\Big\} %\cr&\q ={1\over\sqrt{2\pi}}\int_{-\iy}^x\exp\Big(-{u^2\over 2}\Big)\,du.
Databáze: OpenAIRE