Spectral Properties of the Periodic Magnetic Schr�dinger Operator in the High-Energy Region. Two-Dimensional Case

Autor: Yulia Karpeshina
Rok vydání: 2004
Předmět:
Zdroj: Communications in Mathematical Physics. 251:473-514
ISSN: 1432-0916
0010-3616
DOI: 10.1007/s00220-004-1129-0
Popis: The goal is to investigate spectral properties of the operator H=(−i∇ +a(x))2+a0(x) in the two-dimensional situation, a(x), a0(x)) being periodic. We construct asymptotic formulae for Bloch eigenvalues and eigenfunctions in the high-energy region, describe properties of isoenergetic curves in the space of quasimomenta and give a new proof of the Bethe-Sommerfeld conjecture.
Databáze: OpenAIRE