Spectral Properties of the Periodic Magnetic Schr�dinger Operator in the High-Energy Region. Two-Dimensional Case
Autor: | Yulia Karpeshina |
---|---|
Rok vydání: | 2004 |
Předmět: | |
Zdroj: | Communications in Mathematical Physics. 251:473-514 |
ISSN: | 1432-0916 0010-3616 |
DOI: | 10.1007/s00220-004-1129-0 |
Popis: | The goal is to investigate spectral properties of the operator H=(−i∇ +a(x))2+a0(x) in the two-dimensional situation, a(x), a0(x)) being periodic. We construct asymptotic formulae for Bloch eigenvalues and eigenfunctions in the high-energy region, describe properties of isoenergetic curves in the space of quasimomenta and give a new proof of the Bethe-Sommerfeld conjecture. |
Databáze: | OpenAIRE |
Externí odkaz: |