Autor: |
Seland, Øyvind, Bentsen, Mats, Oliviè, Dirk Jan Leo, Toniazzo, Thomas, Gjermundsen, Ada, Graff, Lise Seland, Debernard, Jens Boldingh, Gupta, Alok Kumar, He, Yan-Chun, Kirkevåg, Alf, Schwinger, Jörg, Tjiputra, Jerry, Aas, Kjetil Schanke, Bethke, Ingo, Fan, Yuanchao, Griesfeller, Jan, Grini, Alf, Guo, Chuncheng, Ilicak, Mehmet, Karset, Inger Helene H, Landgren, Oskar Andreas, Liakka, Johan, Moseid, Kine Onsum, Nummelin, Aleksi, Spensberger, Clemens, Tang, Hui, Zhang, Zhongshi, Heinze, Christoph, Iversen, Trond, Schulz, Michael |
Předmět: |
|
Popis: |
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. NorESM2 is based on the second version of the Community Earth System Model (CESM2) and shares with CESM2 the computer code infrastructure and many Earth system model components. However, NorESM2 employs entirely different ocean and ocean biogeochemistry models. The atmosphere component of NorESM2 (CAM-Nor) includes a different module for aerosol physics and chemistry, including interactions with cloud and radiation; additionally, CAM-Nor includes improvements in the formulation of local dry and moist energy conservation, in local and global angular momentum conservation, and in the computations for deep convection and air–sea fluxes. The surface components of NorESM2 have minor changes in the albedo calculations and to land and sea-ice models. We present results from simulations with NorESM2 that were carried out for the sixth phase of the Coupled Model Intercomparison Project (CMIP6). Two versions of the model are used: one with lower (∼ 2∘) atmosphere–land resolution and one with medium (∼ 1∘) atmosphere–land resolution. The stability of the pre-industrial climate and the sensitivity of the model to abrupt and gradual quadrupling of CO2are assessed, along with the ability of the model to simulate the historical climate under the CMIP6 forcings. Compared to observations and reanalyses, NorESM2 represents an improvement over previous versions of NorESM in most aspects. NorESM2 appears less sensitive to greenhouse gas forcing than its predecessors, with an estimated equilibrium climate sensitivity of 2.5 K in both resolutions on a 150-year time frame; however, this estimate increases with the time window and the climate sensitivity at equilibration is much higher. We also consider the model response to future scenarios as defined by selected Shared Socioeconomic Pathways (SSPs) from the Scenario Model Intercomparison Project defined under CMIP6. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.0, and 3.9 K in NorESM2-LM, and 1.3, 2.1, 3.1, and 3.9 K in NorESM-MM, robustly similar in both resolutions. NorESM2-LM shows a rather satisfactory evolution of recent sea-ice area. In NorESM2-LM, an ice-free Arctic Ocean is only avoided in the SSP1-2.6 scenario. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|