Popis: |
A concept is proposed to simplify patient positioning and scan planning to improve ease of use and workflow in MR. After patient preparation in front of the scanner the operator selects the anatomy of interest by a single push-button action. Subsequently, the patient table is moved automatically into the scanner, while real-time 3D isotropic low-resolution continuously moving table scout scanning is performed using patient-independent MR system settings. With a real-time organ identification process running in parallel and steering the scanner, the target anatomy can be positioned fully automatically in the scanner's sensitive volume. The desired diagnostic examination of the anatomy of interest can be planned and continued immediately using the geometric information derived from the acquired 3D data. The concept was implemented and successfully tested in vivo in 12 healthy volunteers, focusing on the liver as the target anatomy. The positioning accuracy achieved was on the order of several millimeters, which turned out to be sufficient for initial planning purposes. Furthermore, the impact of nonoptimal system settings on the positioning performance, the signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) was investigated. The present work proved the basic concept of the proposed approach as an element of future scan automation. |