Catalyst Degradation Mechanisms in PEM and Direct Methanol Fuel Cells

Autor: Eric L. Thompson, Hubert A. Gasteiger, Frederick T. Wagner, Michael K. Budinski, Rohit Makharia, Paul Taichiang Yu, W. Gu, Susan Yan, Brian K. Brady, Brian A. Litteer
Rok vydání: 2008
Předmět:
Zdroj: Mini-Micro Fuel Cells ISBN: 9781402082931
DOI: 10.1007/978-1-4020-8295-5_15
Popis: While much attention has been given to optimizing initial fuel cell performance, only recent research has focused on the various materials degradation mechanisms observed over the life-time of fuel cells under real-life operating conditions. This presentation will focus on fuel cell durability constraints produced by platinum sintering/dissolution, carbon-support oxidation, and membrane chemical and mechanical degradations. Over the past 10 years, extensive R&D efforts were directed towards optimizing catalysts, membranes, and gas diffusion layers (GDL) as well as combining them into improved membrane electrode assemblies (MEAs), leading to significant improvements in initial performance of H2/air-fed proton exchange membrane fuel cells (PEMFCs) and methanol/air-fed direct methanol fuel cells (DMFCs). 3 While the required performance targets have not yet been met, current PEMFC and DMFC performance are close to meeting entry-level applications and many prototypes have been developed for field testing. This partially shifted the R&D focus from performance optimization to more closely examining materials degradation phenomena which limit fuel cell durability under real-life testing conditions. The predominant degradation mechanisms are sintering/dissolution of platinum-based cathode catalysts under highly dynamic operating conditions, dissolution of ruthenium from DMFC anode catalysts, the oxidation of carbon-supports of the cathode catalyst during fuel cell startup and shutdown, and the formation of pinholes in proton exchange membranes if
Databáze: OpenAIRE