Orbital stability of solitary waves for derivative nonlinear Schrödinger equation
Autor: | Soonsik Kwon, Yifei Wu |
---|---|
Rok vydání: | 2018 |
Předmět: |
Partial differential equation
General Mathematics 010102 general mathematics Phase (waves) 01 natural sciences Symmetry (physics) Schrödinger equation 010101 applied mathematics Nonlinear system symbols.namesake Critical mass symbols 0101 mathematics Scaling Nonlinear Schrödinger equation Analysis Mathematics Mathematical physics |
Zdroj: | Journal d'Analyse Mathématique. 135:473-486 |
ISSN: | 1565-8538 0021-7670 |
DOI: | 10.1007/s11854-018-0038-7 |
Popis: | In this paper, we show the orbital stability of solitons arising in the cubic derivative nonlinear Schrodinger equations. We consider the zero mass case that is not covered by earlier works. As this case enjoys L2 scaling invariance, we expect orbital stability (up to scaling symmetry) in addition to spatial and phase translations. We also show a self-similar type blow up criterion of solutions with the critical mass 4π. |
Databáze: | OpenAIRE |
Externí odkaz: |