Orbital stability of solitary waves for derivative nonlinear Schrödinger equation

Autor: Soonsik Kwon, Yifei Wu
Rok vydání: 2018
Předmět:
Zdroj: Journal d'Analyse Mathématique. 135:473-486
ISSN: 1565-8538
0021-7670
DOI: 10.1007/s11854-018-0038-7
Popis: In this paper, we show the orbital stability of solitons arising in the cubic derivative nonlinear Schrodinger equations. We consider the zero mass case that is not covered by earlier works. As this case enjoys L2 scaling invariance, we expect orbital stability (up to scaling symmetry) in addition to spatial and phase translations. We also show a self-similar type blow up criterion of solutions with the critical mass 4π.
Databáze: OpenAIRE