Convergence Estimates for a Locally One-Dimensional Finite Difference Scheme for Parabolic Initial-Boundary Value Problems

Autor: C. S. Caldwell
Rok vydání: 1976
Předmět:
Zdroj: SIAM Journal on Numerical Analysis. 13:514-519
ISSN: 1095-7170
0036-1429
DOI: 10.1137/0713044
Popis: Error estimates for a locally one-dimensional finite difference scheme for parabolic initial-boundary value problems are presented. Techniques from Bramble, Hubbard and Thomee [1] are applied to a method proposed by Samarskii [5].It is shown that if the right-hand side of the differential equation has “smoothness” $\lambda $ for $1 \leqq \lambda \leqq 2$ and the initial and boundary data have “smoothness” $\mu $ where $0 \leqq \mu \leqq 4$ then the truncation error is bounded by \[ C\left\{ {h^\lambda | f |_{\mathcal{Q}}^{(\lambda )} + h^{{\mu / 2}} | {(\varphi ,{\bf \Phi} )} |_{\mathcal{R} \times \partial \mathcal{Q}}^{(\mu )} } \right\}.\]
Databáze: OpenAIRE