On the girth and diameter of generalized Johnson graphs
Autor: | Carmen Amarra, John S. Caughman, Ari J. Herman, Louis Anthony Agong, Taiyo S. Terada |
---|---|
Rok vydání: | 2018 |
Předmět: |
Discrete mathematics
Johnson graph Induced path 010102 general mathematics 0102 computer and information sciences 01 natural sciences Graph Theoretical Computer Science Combinatorics 010201 computation theory & mathematics Chordal graph Odd graph Discrete Mathematics and Combinatorics Graph homomorphism 0101 mathematics Cage Mathematics Moore graph |
Zdroj: | Discrete Mathematics. 341:138-142 |
ISSN: | 0012-365X |
DOI: | 10.1016/j.disc.2017.08.022 |
Popis: | Let v > k > i be non-negative integers. The generalized Johnson graph, J ( v , k , i ) , is the graph whose vertices are the k -subsets of a v -set, where vertices A and B are adjacent whenever | A ∩ B | = i . In this article, we derive general formulas for the girth and diameter of J ( v , k , i ) . Additionally, we provide a formula for the distance between any two vertices A and B in terms of the cardinality of their intersection. |
Databáze: | OpenAIRE |
Externí odkaz: |