Linear independence results for the reciprocal sums of Fibonacci numbers associated with Dirichlet characters
Autor: | Yohei Tachiya, Florian Luca, Hiromi Ei |
---|---|
Rok vydání: | 2017 |
Předmět: |
Fibonacci number
General Mathematics 010102 general mathematics Reciprocal Fibonacci constant Dirichlet L-function 010103 numerical & computational mathematics 01 natural sciences Class number formula Dirichlet character Combinatorics symbols.namesake Generalized Dirichlet distribution symbols 0101 mathematics General Dirichlet series Dirichlet series Mathematics |
Zdroj: | Studia Scientiarum Mathematicarum Hungarica. 54:61-81 |
ISSN: | 1588-2896 0081-6906 |
DOI: | 10.1556/012.2017.54.1.1354 |
Popis: | Let {Fn}n≥0 be the sequence of Fibonacci numbers. The aim of this paper is to give linear independence results over ℚ( 5 ) for the infinite series ∑ n=1 ∞ χ j ( n )/ F n with certain nonprincipal real Dirichlet characters χj. We also deduce the irrationality results for the special principal Dirichlet characters and for other multiplicative functions. |
Databáze: | OpenAIRE |
Externí odkaz: |