Liouville theorems for elliptic systems with nonlinear gradient terms
Autor: | Jorge García-Melián, M. Á. Burgos-Pérez |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Journal of Differential Equations. 265:6316-6351 |
ISSN: | 0022-0396 |
DOI: | 10.1016/j.jde.2018.07.034 |
Popis: | In this paper we obtain Liouville type theorems for positive supersolutions of the elliptic system { − Δ u + | ∇ u | q = λ f ( v ) − Δ v + | ∇ v | q = μ g ( u ) in exterior domains of R N , where q > 1 and the functions f and g behave like a power near zero or infinity. We show that positive supersolutions do not exist in some ranges of the parameters involved, which are optimal in the special case where f ( v ) = v p and g ( u ) = u s , with p , s > 0 . |
Databáze: | OpenAIRE |
Externí odkaz: |