Intestinal resection affects whole-body arginine synthesis in neonatal piglets
Autor: | Pamela R. Wizzard, Megan R Beggs, Mahroukh Rafii, Justine M. Turner, Paul B. Pencharz, Ronald O. Ball, George Slim, Paul W. Wales, R. Todd Alexander, Patrick N. Nation, Marihan Lansing |
---|---|
Rok vydání: | 2020 |
Předmět: |
medicine.medical_specialty
education.field_of_study Arginine business.industry Population Short bowel syndrome medicine.disease Jejunum 03 medical and health sciences chemistry.chemical_compound 0302 clinical medicine Endocrinology medicine.anatomical_structure Parenteral nutrition Bolus (medicine) chemistry 030225 pediatrics Internal medicine Pediatrics Perinatology and Child Health medicine Citrulline education business 030217 neurology & neurosurgery Blood sampling |
Zdroj: | Pediatric Research. 89:1420-1426 |
ISSN: | 1530-0447 0031-3998 |
Popis: | Background Previous studies in piglets show a direct relationship between intestinal mass and arginine (Arg) synthesis. We aimed to study the effects of 75% intestinal resection on whole-body Arg synthesis. Methods Piglets were allocated to sham or jejunocolic (JC) surgery and to enteral nutrition (EN) at 20% [sham (n = 8), JC (n = 10)], or 40% [sham (n = 4), JC (n = 5)]. A gastric tube was placed for EN and a venous catheter for parenteral nutrition and blood sampling. On day 6, a primed bolus and constant infusion of Arg m + 2 label and proline m + 1 label was delivered. In addition, 40% EN piglets received a citrulline (Cit) m + 3 tracer. Blood sampling was undertaken and whole-body Arg synthesis was calculated. On day 7, intestinal length was measured, and samples were collected for gene expression (PCR quantification) and histopathology. Results On Day 7, sham piglets showed intestinal lengthening compared to JC (p = 0.02). Whole-body Arg synthesis was similar between groups (p = 0.50). Adjusting for absolute small intestinal length, JC piglets had greater Arg synthesis (p = 0.01). Expression of arginosuccinase was upregulated in the jejunum of JC compared to sham on 20% EN (p = 0.03). Conclusion This demonstrates for the first-time adaptive changes in intestinal Arg synthesis following intestinal resection. Impact The intestine makes a critical contribution to whole-body arginine synthesis, particularly in neonates, a human population at risk for short bowel syndrome. Therefore, we studied intestinal arginine synthesis in a neonatal piglet model of short bowel syndrome and demonstrated adaptive changes in the intestine that may preserve whole-body arginine synthesis, despite loss of intestinal mass. This research adds new information to our understanding of the effects a massive intestinal resection has on amino acid metabolism during neonatal development. |
Databáze: | OpenAIRE |
Externí odkaz: |