Popis: |
Background: The Wireless Sensor Network (WSN) is a type of networks which primarily designed for the purpose of monitoring in remote areas. It consists of communicating nodes (called sensor's) which communicate each other to share their data and passing the information to the central node. In many applications like defence requires the secure communication of information. However, due to the numerous characteristics of WSN such as open shared communication channel, limited memory, and processing power of sensors, etc. these networks are vulnerable to various attacks such as black hole, gray hole, etc. Objective: The objective of the paper is to secure the AODV routing protocol in WSN using cryptography techniques. Methods: In this paper, the Ad hoc On-demand Distance Vector (AODV) routing protocol has been chosen for information routing because of their lightweight processing capability. To provide secure communication in WSN, the AODV routing protocol is secured by utilizing the RSA key generation algorithm. Here, RSA with three variables (three prime numbers) is employed instead of two variables. Results: The effectiveness of the proposed approach in handling black hole attack is being verified through the simulation results obtained from the experiments conducted using Network Simulator tool (NS2). The three popular performance metrics namely Average End-to-End Delay, Packet Delivery Ratio, and Average Throughput are used for evaluation purpose. These results are observed under different pose time and varying number of malicious nodes. Conclusion: In this paper, a new three variable RSA cryptosystem-based security model is proposed to protect the communication against the Black Hole (BH) attack in wireless sensor networks. The use of three variables instead of two variables allows our model to provide more security as compared to other methods. Simulation results obtained from the experiments carried out using NS2 tool evident the performance of the proposed model over original AODV and other previous models. |