Numerical analysis of an ill-posed Cauchy problem for a convection--diffusion equation
Autor: | Lars Eldén, Zohreh Ranjbar |
---|---|
Rok vydání: | 2007 |
Předmět: | |
Zdroj: | Inverse Problems in Science and Engineering. 15:191-211 |
ISSN: | 1741-5985 1741-5977 |
DOI: | 10.1080/17415970600557299 |
Popis: | The mathematical and numerical properties of an ill-posed Cauchy problem for a convection--diffusion equation are investigated in this study. The problem is reformulated as a Volterra integral equation of the first kind with a smooth kernel. The rate of decay of the singular values of the integral operator determines the degree of ill-posedness. The purpose of this article is to study how the convection term influences the degree of ill-posedness by computing numerically the singular values. It is also shown that the sign of the coefficient in the convection term determines the rate of decay of the singular values. Some numerical examples are also given to illustrate the theory. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |