Constraining the CME parameters of the spheromak flux rope implemented in EUHFORIA

Autor: Eleanna Asvestari, Jens Pomoell, Theodosios Chatzistergos, Emilia Kilpua, Jasmina Magdalenic, Erika Palmerio, Simon Good, Stefaan Poedts, Manuela Temmer
Rok vydání: 2021
Předmět:
Popis: Coronal mass ejections (CMEs) are primary drivers of space weather phenomena. Modelling the evolution of the internal magnetic field configuration of CMEs as they propagate through the interplanetary space is an essential part of space weather forecasting. EUHFORIA (EUropean Heliospheric FORecasting Information Asset) is a data-driven, physics-based model, able to trace the evolution of CMEs and CME-driven shocks through realistic background solar wind conditions. It employs a spheromak-type magnetic flux rope that is initially force-free, providing it with the advantage of modelling CME as magnetised structures. For this work we assessed the spheromak CME model employed in EUHFORIA with a test CME case study. The selected CME eruption occurred on the 6th of January 2013 and was encountered by two spacecraft, Venus Express and STEREO--A, which were radially aligned at the time of the CME passage. Our focus was to constrain the input parameters, with particular interest in: (1) translating the angular widths of the graduated cylindrical shell (GCS) fitting to the spheromak radius, and (2) matching the observed magnetic field topology at the source region. We ran EUHFORIA with three different spheromak radii. The model predicts arrival times from half to a full day ahead of the one observed in situ. We conclude that the choice of spheromak radius affected the modelled magnetic field profiles, their amplitude, arrival times, and sheath region length.
Databáze: OpenAIRE