Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids

Autor: W. C. M. Klein Breteler, G. W. Kraay, Marianne Baas, N. Schogt, Stefan Schouten
Rok vydání: 1999
Předmět:
Zdroj: Marine Biology. 135:191-198
ISSN: 1432-1793
0025-3162
DOI: 10.1007/s002270050616
Popis: Protozoa are known for their intermediary trophic role in transferring organic matter from small size planktonic particles to mesozooplankton. This study concentrates on the possible addition of biochemical value during this transfer, by new production of compounds that are essential in copepod food. In laboratory experiments, copepods could not be raised on a diet of the chlorophycean Dunaliella sp., though they readily consumed this alga. Dunaliella sp. contained all essential amino acids, but was deficient in highly unsaturated fatty acids and in sterols. In contrast to copepods, the heterotrophic dinoflagellate Oxyrrhis marina grew well on Dunaliella sp., producing significant amounts of the long-chain fatty acids docosahexaenoic acid and eicosapentaenoic acid, in addition to cholesterol and brassicasterol. Using this O. marina grown on Dunaliella sp. to feed Temora longicornis and Pseudocalanus elongatus, both copepod species rapidly developed from young nauplius larvae to maturity on the dinoflagellate diet. Hence, in this experimental food-chain the inadequate chlorophycean food was biochemically upgraded by the protozoan to high-quality copepod food. The results indicate that highly unsaturated fatty acids and/or sterols are essential compounds, which can be produced by protozoans. Due to their intermediate size, the mechanism of trophic upgrading by protozoans may bridge the gap of essential nutrients between the microbial loop and higher trophic levels.
Databáze: OpenAIRE