An inhomogeneous nonlocal diffusion problem with unbounded steps

Autor: Salomé Martínez, Manuel Elgueta, Jorge García-Melián, Carmen Cortázar
Rok vydání: 2015
Předmět:
Zdroj: Journal of Evolution Equations. 16:209-232
ISSN: 1424-3202
1424-3199
DOI: 10.1007/s00028-015-0299-x
Popis: We consider the following nonlocal equation $$\int J\left(\frac{x-y}{g(y)} \right) \frac{u(y)}{g(y)} dy -u(x)=0\qquad x\in \mathbb{R},$$ where J is an even, compactly supported, Holder continuous kernel with unit integral and g is a continuous positive function. Our main concern will be with unbounded functions g, contrary to previous works. More precisely, we study the influence of the growth of g at infinity on the integrability of positive solutions of this equation, therefore determining the asymptotic behavior as \({t\to +\infty}\) of the solutions to the associated evolution problem in terms of the growth of g.
Databáze: OpenAIRE