Popis: |
The performance of an L-alanine dosimeter with millimeter dimensions was evaluated for dosimetry in small radiation fields. Relative output factor (ROF) measurements were made for 0.5 x 0.5, 1 x 1, 3 x 3, 5 x 5, 10 x 10 cm(2) square fields and for 5-, 10-, 20-, 40-mm-diam circular fields. In beam profile (BP) measurements, only 1 x 1, 3 x 3, 5 x 5 cm2 square fields and 10-, 20-, 40-mm-diam circular fields were used. For square and circular field irradiations, Varian/Clinac 2100, and a Siemens/Mevatron 6 MV linear accelerators were used, respectively. For a batch of 800 L-alanine minidosimeters (miniALAs) the average mass was 4.3+/-0.5 (1 sigma) mg, the diameter was 1.22+/-0.07 (1 sigma) mm, and the length was 3.5+/-0.2 (l sigma) mm. A K-Band (24 GHz) electron paramagnetic resonance (EPR) spectrometer was used for recording the spectrum of irradiated and nonirradiated miniALAs. To evaluate the performance of the miniALAs, their ROF and BP results were compared with those of other types of detectors, such as an ionization chamber (PTW 0.125 cc), a miniTLD (LiF: Mg,Cu,P), and Kodak/X-Omat V radiographic film. Compared to other dosimeters, the ROF results for miniALA show differences of up to 3% for the smallest fields and 7% for the largest ones. These differences were within the miniALA experimental uncertainty (-5-6% at 1 sigma). For BP measurements, the maximum penumbra width difference observed between miniALA and film (10%-90% width) was less than 1 mm for square fields and within 1-2 mm for circular fields. These penumbra width results indicate that the spatial resolution of the miniALA is comparable to that of radiographic film and its dimensions are adequate for the field sizes used in this experiment. The K-Band EPR spectrometer provided adequate sensitivity for assessment of miniALAs with doses of the order of tens of Grays, making this dosimetry system (K-Band/miniALA) a potential candidate for use in radiosurgery dosimetry. |