Popis: |
SUMMARYSphingolipids (SLs) are pivotal components of biological membranes essentially contributing to their physiological functions. 1-deoxysphingolipids (deoxySLs), an atypical cytotoxic acting sub-class of SLs, is relevant for cellular energy homeostasis and is known to be connected to neurodegenerative disorders including diabetic neuropathy and hereditary sensory neuropathy type 1 (HSAN1). High levels of deoxySLs affect lipid membrane integrity in artificial liposomes. Accordingly, recent reports questioned the impact of deoxySLs on physiological lipid membrane and organelle functions leading to impaired cellular energy homeostasis.However, DeoxySL-related structural effects on cell membranes resulting in organelle dysfunction are still obscure. To illuminate disease-relevant sub-cellular targets of deoxySLs, we traced alkyne-containing 1-deoxysphinganine (alkyne-DOXSA) and resulting metabolites on ultra-structural level using a new labeling approach for electron microscopy (EM) termed “Golden-Click-Method” (GCM). To complement high-resolution analysis with membrane dynamics, selected intracellular compartments were traced using fluorescent live dyes.Our results conclusively linked accumulating cytotoxic deoxySLs with mitochondria and endoplasmic reticulum (ER) damage triggering Autophagy of mitochondria and membrane cisterna of the ER. The induced autophagic flux ultimately leads to accumulating deoxySL containing intra-lysosomal lipid crystals. Lysosomal lipid substrate accumulation impaired physiological lysosome functions and caused cellular starvation. Lysosomal exocytosis appeared as a mechanism for cellular clearance of cytotoxic deoxySLs. In sum, our data define new ultra-structural targets of deoxySLs and link membrane damage to autophagy and abnormal lysosomal lipid accumulation. These insights may support new conclusions about diabetes type 2 and HSNA1 related tissue damage. |