On the harmonic volume of Fermat curves
Autor: | Payman Eskandari, V. Murty |
---|---|
Rok vydání: | 2021 |
Předmět: |
Fermat's Last Theorem
0303 health sciences Applied Mathematics General Mathematics 010102 general mathematics Mathematical analysis MathematicsofComputing_GENERAL Harmonic (mathematics) 01 natural sciences 03 medical and health sciences Volume (thermodynamics) 0101 mathematics 030304 developmental biology Mathematics |
Zdroj: | Proceedings of the American Mathematical Society. 149:1919-1928 |
ISSN: | 1088-6826 0002-9939 |
Popis: | We prove that B. Harris’ harmonic volume of the Fermat curve of degree n n is of infinite order if n n has a prime divisor greater than 7. The statement is equivalent to the statement that the Griffiths’ Abel-Jacobi image of the Ceresa cycle of such a curve is of infinite order for every choice of base point. In particular, these cycles are of infinite order modulo rational equivalence. |
Databáze: | OpenAIRE |
Externí odkaz: |