Nonlinear analysis of two-dimensional steel, reinforced concrete and composite steel-concrete structures via coupling SCM/RPHM
Autor: | Ígor José Mendes Lemes, Ricardo Azambuja Silveira, Andréa Regina Dias da Silva, Paulo Anderson Santana Rocha |
---|---|
Rok vydání: | 2017 |
Předmět: |
Materials science
Discretization business.industry 0211 other engineering and technologies 020101 civil engineering Flexural rigidity 02 engineering and technology Structural engineering Plasticity Finite element method 0201 civil engineering Nonlinear system Residual stress 021105 building & construction Plastic hinge Bearing capacity business Civil and Structural Engineering |
Zdroj: | Engineering Structures. 147:12-26 |
ISSN: | 0141-0296 |
DOI: | 10.1016/j.engstruct.2017.05.042 |
Popis: | This paper presents a numerical methodology based on Euler-Bernoulli theory to simulate the steel, reinforced concrete and composite structures 2D nonlinear behavior. The displacement-based numerical formulation uses the principles of the Refined Plastic Hinge Method (RPHM) to simulate the concentrated plasticity at the corotational finite element nodal points. In order to present a more realistic simulation of the axial and flexural stiffness degradation, the RPHM is coupled with the Strain Compatibility Method (SCM), where the materials constitutive relations are used explicitly. The SCM is also applied in determining the structural elements’ bearing capacity. Moreover, the present approach is not limited to a specific cross-sectional typology. Also addressed are residual stress models; these are introduced explicitly in subareas of steel profiles generated by a two-dimensional cross-sectional discretization. It should be emphasized that this study considers full interaction between the materials. Finally, the results obtained are compared with numerical and experimental findings available in the literature. |
Databáze: | OpenAIRE |
Externí odkaz: |